Skip to main content
Log in

Comparative Primary Metabolic and Lipidomic Profiling of Freshwater and Marine Synechocystis Strains Using by GC-MS and NanoESI-MS Analyses

  • Research Paper
  • Systems Biology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Synechocystis strains are considered as valuable resources for production of useful metabolites. Comparative primary metabolic and lipidomic profiling of freshwater and marine Synechocystis strains is needed to understand the physiological characteristics of each strain at molecular level. In this study, we performed comparative primary metabolic and lipidomic profiling of freshwater Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803) and marine Synechocystis sp. PCC 7338 (hereafter Synechocystis 7338) by using gas chromatography-mass spectrometry and nano electrospray ionization-mass spectrometry. Neophytadiene, phytol, monogalactosyldiacylglycerol (MGDG), and digalactosyldiacylglycerol (DGDG) were significantly higher in Synechocystis 6803. Levels of alanine, aspartic acid, valine, linoleic acid, linolenic acid, oleic acid, plamitic acid, stearic acid, glucosylglycerol, sucrose, phosphatidylglycerol (PG), and diacylglyceryltrimethylhomoserine (DGTS) (only detected in Synechocystis 7338) were significantly higher in Synechocystis 7338. Our results provide basic information to choose Synechocystis strains for various industrial usages, and also provide fundamental information on the future development of novel Synechocystis strains to produce high levels of specific metabolites by metabolic pathway modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Parmar, A., N. K. Singh, A. Pandey, E. Gnansounou, and D. Madamwar (2011) Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour. Technol. 102: 10163–10172.

    Article  CAS  PubMed  Google Scholar 

  2. Gouveia, L. and A. C. Oliveira (2009) Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269–274.

    Article  CAS  PubMed  Google Scholar 

  3. Griffiths, M. J. and S. T. L. Harrison (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493–507.

    Article  CAS  Google Scholar 

  4. Lee, S. J., S. Go, G. T. Jeong, and S. K. Kim (2011) Oil production from five marine microalgae for the production of biodiesel. Biotechnol. Bioprocess Eng. 16: 561–566.

    Article  CAS  Google Scholar 

  5. Wijffels, R. H., O. Kruse, and K. J. Hellingwerf (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24: 405–413.

    Article  CAS  PubMed  Google Scholar 

  6. Dexter, J. and P. Fu (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci. 2: 857–864.

    Article  CAS  Google Scholar 

  7. Tan, X., L. Yao, Q. Gao, W. Wang, F. Qi, and X. Lu (2011) Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab. Eng. 13: 169–176.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, X., J. Sheng, and R. Curtiss III (2011) Fatty acid production in genetically modified cyanobacteria. Proc. Natl. Acad. Sci. USA. 108: 6899–6904.

    Article  CAS  PubMed  Google Scholar 

  9. Yu, Y., L. You, D. Liu, W. Hollinshead, Y. J. Tang, and F. Zhang (2013) Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory. Mar. Drugs 11: 2894–2916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Institut Psteur, https://Catalogue-crbip.pasteur.fr.

  11. Park, B. I., S. J. Hong, B. K. Cho, D. M. Kim, H. Lee, H. K. Choi, and C. G. Lee (2019) Optimization of culture conditions for enhanced phycobiliprotein production in Synechocystis sp. PCC 7338. Abstracts of the 59th KSIEC Meeting. May 1-3. Busan, Korea.

    Google Scholar 

  12. Okazaki, Y. and K. Saito (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotechnol. Rep. 6: 1–15.

    Article  PubMed  Google Scholar 

  13. Fiehn, O. (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol. 48: 155–171.

    Article  CAS  PubMed  Google Scholar 

  14. Barofsky, A., C. Vidoudez, and G. Pohnert (2009) Metabolic profiling reveals growth stage variability in diatom exudates. Limnol. Oceanogr. Methods. 7: 382–390.

    Article  CAS  Google Scholar 

  15. Rezanka, T., L. Nedbalova, J. Lukavsky, L. Prochazkova, and K. Sigler (2017) Lipidomic analysis of two closely related strains of the microalga Parietochloris (Trebouxiophyceae, Chlorophyta). Algal Res. 25:473–482.

    Article  Google Scholar 

  16. Kim, S. H., H. M. Aim, S. R. Lim, S. J. Hong, B. K. Cho, H. Lee, C. G. Lee, and H. K. Choi (2015) Comparative lipidomic profiling of two Dunaliella tertiolecta strains with different growth temperatures under nitrate-deficient conditions. J. Agric. Food Chem. 63: 880–887.

    Article  CAS  PubMed  Google Scholar 

  17. Han, X. and R. W. Gross (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics. J. Lipid Res. 44: 1071–1079.

    Article  CAS  PubMed  Google Scholar 

  18. Li, L., J. Han, Z. Wang, J. Liu, J. Wei, S. Xiong, and Z. Zhao (2014) Mass spectrometry methodology in lipid analysis. Int. J. Mol. Sci. 15: 10492–10507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang, Y., M. Shi, X. Niu, X. Zhang, L. Gao, L. Chen, J. Wang, and W. Zhang (2014) Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Mircob. Cell Fact. 13: 151.

    Article  CAS  Google Scholar 

  20. Belghit, I., J. D. Rasinger, S. Heesch, I. Biancarosa, N. Liland, B. Torstensen, R. Waagbø, E. J. Lock, and C. G. Bruckner (2017) In-depth metabolic profiling of marine macroalgae confirms strong biochemical differences between brown, red and green algae. Algal Res. 26: 240–249.

    Article  Google Scholar 

  21. Shukla, E., S. S. Singh, P. Singh, and A. K. Mishra (2012) Chemotaxonomy of heterocystous cyanobacteria using FAME profiling as species markers. Protoplasma. 249: 651–661.

    Article  CAS  PubMed  Google Scholar 

  22. Li, S., J. Xu, Y. Jiang, C. Zhou, X. Yu, Y. Zhong, J. Chen, and X. Yan (2015) Lipidomic analysis can distinguish between two morphologically similar strains of Nannochloropsis oceanica. J. Phycol. 51: 264–276.

    Article  PubMed  CAS  Google Scholar 

  23. Velasquez-Orta, S. B., J. G. M. Lee, and A. P. Harvey (2013) Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochem. Eng. J. 76: 83–89.

    Article  CAS  Google Scholar 

  24. Talebi, A. F., M. Tabatabaei, S. K. Mohtashami, M. Tohidfar, and F. Moradi (2013) Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae. Not. Sci. Biol. 5: 309–315.

    Article  CAS  Google Scholar 

  25. Lee, H. S., Z. H. Kim, H. Park, and C. G. Lee (2016) Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess Biosyst. Eng. 39: 815–823.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J. Y., H. Y. Kim, J. Y. Jeon, D. M. Kim, Y. Zhou, J. S. Lee, H. Lee, and H. K. Choi (2017) Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture. PLoS One. 12: e0187622.

    Google Scholar 

  27. Kim, S. H., S. R. Lim, S. J. Hong, B. K. Cho, H. Lee, C. G. Lee, and H. K. Choi (2016) Effect of ethephon as an ethylene-releasing compound on the metabolic profile of Chlorella vulgaris. J. Agric. Food Chem. 64: 4807–4816.

    Article  CAS  PubMed  Google Scholar 

  28. Kind, T., K. H. Liu, D. Y. Lee, B. DeFelice, J. K. Meissen, and F. Oliver (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods. 10: 755–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eriksson, L. (2006) Multi- and Megavariate Data Analysis. 2nd ed., pp. 39–102. Umetrics Academy, Umea, Sweden.

    Google Scholar 

  30. Schrader, A., W. Siefken, T. Kueper, U. Breitenbach, C. Gatermann, G. Sperling, T. Biernoth, C. Schemer, F. Stab, H. Wenck, K. P. Wittern, and T. Blatt (2012) Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin. Skin Pharmacol. Physiol. 25: 192–199.

    Article  CAS  PubMed  Google Scholar 

  31. Reed, R. H. and W. D. P. Stewart (1985) Osmotic adjustment and organic solute accumulation in unicellular cyanobacteria from freshwater and marine habitats. Mar. Biol. 88: 1–9.

    Article  CAS  Google Scholar 

  32. Ochsenkuhn, M. A., T. Röthig, C. D'Angelo, J. Wiedenmann, and C. R. Voolstra (2017) The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv. 3: e1602047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tan, X., Q. Luo, and X. Lu (2016) Biosynthesis, biotechnological production, and applications of glucosylglycerols. Appl. Microbiol. Biotechnol. 100: 6131–6139.

    Article  CAS  PubMed  Google Scholar 

  34. Fulda, S., S. Mikkat, F. Huang, I. Huckauf, K. Marin, B. Norling, and M. Hagemann (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics. 6: 2733–2745.

    Article  CAS  PubMed  Google Scholar 

  35. Leuchtenberger, W., K. Huthmacher, and K. Drauz (2005) Biotechnological production of amino acids and derivatives: Current status and prospects. Appl. Microbiol. Biotechnol. 69: 1–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ijima, H., Y. Nakaya, A. Kuwahara, M. Y. Hirai, and T. Osanai (2015) Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism. Front. Microbiol. 6: 326.

    Google Scholar 

  37. Delauney, A. J. and D. P. S. Verma (1993) Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215–223.

    Article  CAS  Google Scholar 

  38. Guerzoni, J. T. S., N. G. Belintani, R. M. P. Moreira, A. A. Hoshino, D. S. Domingues, J. C. B. Filho, and L. G. E. Vieira (2014) Stress-induced Al-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol. Plant. 36: 2309–2319.

    Article  CAS  Google Scholar 

  39. Kumar, S. G., A. M. Reddy, and C. Sudhakar (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci. 165: 1245–1251.

    Article  CAS  Google Scholar 

  40. Allakhverdiev, S. I., M. Kinoshita, M. Inaba, I. Suzuki, and N. Murata (2002) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol. 125: 1842–1853.

    Article  Google Scholar 

  41. Dieterle, M. and E. Schwab (2016) Raw material change in the chemical industry. Top. Catal. 59: 817–822.

    Article  CAS  Google Scholar 

  42. Singh, R., S. A. Dar, and P. Sharma (2012) Antibacterial activity and toxicological evaluation of semi purified hexane extract of Urtica dioica leaves. Res. J. Med. Plant. 6: 123–135.

    Article  CAS  Google Scholar 

  43. Lee, W., E. R. Woo, and D. G. Lee (2016) Phytol has antibacterial property by inducing oxidative stress response in Pseudomonas aeruginosa. Free Radic. Res. 50: 1309–1318.

    Article  CAS  PubMed  Google Scholar 

  44. McGinty, D., C. S. Letizia, and A. M. Api (2010) Fragrance material review on phytol. Food Chem. Toxicol. 48: S59–S63.

    Article  CAS  PubMed  Google Scholar 

  45. Plouguerné, E., L. M. De Souza, G. L. Sassaki, J. F. Cavalcanti, M. T. V. Romanos, B. A. P. Da Gama, R. C. Pereira, and E. Barreto-Bergter (2013) Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the brazilian brown seaweed Sargassum vulgare. Mar. Drugs. 11: 4628–4640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tsai, C. J. and B. S. Pan (2012) Identification of sulfoglycolipid bioactivities and characteristic fatty acids of marine macroalgae. J. Agric. Food Chem. 60: 8404–8410.

    Article  CAS  PubMed  Google Scholar 

  47. Aoki, M., N. Sato, A. Meguro, and M. Tsuzuki (2004) Differing involvement of sulfoquinovosyl diacylglycerol in photosystem II in two species of unicellular cyanobacteria. Eur. J. Biochem. 271: 685–693.

    Article  CAS  PubMed  Google Scholar 

  48. Elkahoui, S., A. Smaoui, M. Zarrouk, R. Ghrir, and F. Limam (2004) Salt-induced lipid changes in Catharanthus roseus cultured cell suspensions. Phytochemistry. 65: 1911–1917.

    Article  CAS  PubMed  Google Scholar 

  49. Antonopoulou, S., T. Nomikos, A. Oikonomou, A. Kyriacou, M. Andriotis, E. Fragopoulou, and A. Pantazidou (2005) Characterization of bioactive glycolipids from Scytonema julianum (cyanobacteria). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 140: 219–231.

    Article  PubMed  CAS  Google Scholar 

  50. Sui, N., D. Wei, F. Chen, and S. T. Yang (2012) Lipidomic profiling and discovery of lipid biomarkers in snow alga Chlamydomonas nivalis under salt stress. Eur. J. Lipid Sci. Technol. 114: 253–265.

    Article  CAS  Google Scholar 

  51. Sui, N., M. Li, K. Li, J. Song, and B. S. Wang (2010) Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica. 48: 623–629.

    Article  CAS  Google Scholar 

  52. Banskota, A. H., R. Stefanova, S. Sperker, and P. J. McGinn (2013) New diacylglyceryltrimethylhomoserines from the marine microalga Nannochloropsis granulata and their nitric oxide inhibitory activity. J. Appl. Phycol. 25: 1513–1521.

    Article  CAS  Google Scholar 

  53. Sato, N. and M. Furuya (1984) Distribution of diacyl-glyceryltrimethylhomoserine in selected species of vascular plants. Phytochemistiry. 23: 1625–1627.

    Article  CAS  Google Scholar 

  54. Rezanka, T., I. Viden, J. V. Go, I. Dor, and V. M. Dembitsky (2003) Polar lipids and fatty acids of three wild cyanobacterial strains of the genus Chroococcidiopsis. Folia Microbiol. 48: 781–786.

    Article  CAS  Google Scholar 

  55. Dembitsky, V. M. (1996) Betaine ether-linked glycerolipids: Chemistry and biology. Prog. Lipid Res. 35: 1–51.

    Article  CAS  PubMed  Google Scholar 

  56. Sato, N. (1992) Betaine lipids. Bot. Mag. Tokyo. 105: 185–197.

    Article  CAS  Google Scholar 

  57. Banskota, A. H., R. Stefanova, P. Gallant, and P. J. McGinn (2013) Mono- and digalactosyldiacylglycerols: Potent nitric oxide inhibitors from the marine microalga Nannochloropsis granulata. J. Appl. Phycol. 25: 349–357.

    Article  CAS  Google Scholar 

  58. Kobayashi, K., K. Endo, and H. Wada (2016) Roles of lipids in photosynthesis, pp. 21–49. In: Y. Nakamura and Y. Li-Beisson (eds.). Lipids in Plant and Algae Development. Springer International Publishing, Berlin, Germany.

    Chapter  Google Scholar 

  59. Sudhir, P. R., D. Pogoryelov, L. Kovacs, G. Garab, and S. D. S. Murthy (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol. 38: 481–485.

    CAS  PubMed  Google Scholar 

  60. Parida, A. K., A. B. Das, and B. Mittra (2003) Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica. 41: 191.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Core Technology Development Program for the Oceans and the Polar Regions of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (No. NRF-2016M1A5A1027464), National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) [NRF-2015R1A5A1008958], and by the Chung-Ang University Graduate Research Scholarship in 2018. The authors declare no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Kyoon Choi.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

12257_2019_432_MOESM1_ESM.pdf

Comparative Primary Metabolic and Lipidomic Profiling of Freshwater and Marine Synechocystis Strains Using by GC-MS and NanoESI-MS Analyses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, Y., Lee, H., Hong, SJ. et al. Comparative Primary Metabolic and Lipidomic Profiling of Freshwater and Marine Synechocystis Strains Using by GC-MS and NanoESI-MS Analyses. Biotechnol Bioproc E 25, 308–319 (2020). https://doi.org/10.1007/s12257-019-0432-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0432-8

Keywords

Navigation